
compynator

google

Nov 05, 2020

CONTENTS

1 Reference 5
1.1 compynator.core . 5
1.2 compynator.niceties . 9

Python Module Index 13

Index 15

i

ii

compynator

This is index.

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

CONTENTS 1

http://www.apache.org/licenses/

compynator

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

2 CONTENTS

compynator

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

CONTENTS 3

http://www.apache.org/licenses/LICENSE-2.0

compynator

4 CONTENTS

CHAPTER

ONE

REFERENCE

• compynator.core

• compynator.niceties

1.1 compynator.core

The essentials of all parser combinators.

The six basic regex definitions are mapped according to:

Regex Compynator
empty set Fail
epsilon Empty
character Terminal
concatenation +
alternative | or ^
Kleene star repeat

Monadic properties are Succeed for unit, Parser.then for bind, and optionally Fail for zero.

compynator.core.Empty = Parser<Succeed@140281776558224>
An empty string. This always succeeds.

class compynator.core.Failure(parser, message, remain='', cause_or_causes=None)
A collection of zero ``Result``s.

This class is used to propagate parse failures and incrementally construct a Success. We usually start out with
an instance of this class, then add more Result objects to it to produce a Success.

>>> parser = 'a' + Terminal('b') + 'c'
>>> ret = Failure(parser, 'Parser fails.', None)
>>> s = ret.add_all(parser('abc'))
>>> isinstance(s, Success)
True

add(result)
Returns a ResultSet (could be self) with result.

add_all(results)
Returns a ResultSet (could be self) with all results.

5

compynator

class compynator.core.ParseContext(options=None)
Internal book-keeping data structure.

class compynator.core.ParseOptions(max_recursion)

property max_recursion
Alias for field number 0

class compynator.core.Parser(parser_function)
Callable that takes a sequence of tokens & returns a ResultSet.

The specific types of inputs and outputs are not known. However, inputs usually are strings. The requirements
for inputs are:

1. they must have __len__

2. they are indexable and slicable

A parser must return a collection of Result``s. Their ``value elements can be any type but their
remain elements must be a slice of the input tokens.

This class can be used as a decorator:

@Parser
def head(tokens):

if len(tokens) >= 1:
return Success(result=Result(tokens[0], tokens[1:]))

return Failure(head, 'Unable to obtain more tokens', tokens)

In that example, head is a parser that returns the first element of the sequence of tokens. Then head can be
chained (then, +) with other parsers, filtered (where, value), or composed together to be more useful.

call(callback)
Simple wrapper around filter to always call callback.

In ambiguous grammar (like the example below), there might be repeated results if call makes up a part
of the variable. Please note the difference in two definitions of the same production rule.

>>> count = 0
>>> def cb(r):
... global count
... count += 1
>>> empty = Succeed('')
>>> s = ((Terminal('s') + (lambda _: s)) ^ empty).call(cb)
>>> r = s('ss')
>>> assert len(r) == 3
>>> count
6
>>> count = 0
>>> s = (Terminal('s') + (lambda _: s)) ^ empty
>>> r = s.call(cb)('ss')
>>> assert len(r) == 3
>>> count
3

filter(callback, take_if=True)
Executes callback on a successful parse and filters results.

callback must take a Result. Every possible result of a rule will be passed to callback.

If truth value as returned by callback is the same as take_if, that Result object is included.

6 Chapter 1. Reference

compynator

NOTE: The ordering between filter and memoize is important and may result in callback not
being invoked.

memoize()
Memoizes parsed results of self.

The memoization allows for ambiguous grammar to be processed efficiently. See the paper Parser Combi-
nators for Ambiguous Left Recursive Grammars.

This modifier is recommended when the unbiased __xor__ operator is used, or when left recursion is in
the grammar:

>>> empty = Succeed('')
>>> s = ((Terminal('s') + (lambda _: s) + (lambda _: s)) ^
... empty).memoize()
>>> len(s('s' * 20))
21

Without the memoize modifier in the above example, it would take a very long time to parse.

parse(tokens)
Parses the input tokens under the default context.

parse_with_context(tokens, context)
Parses input tokens under the context of context.

repeat(lower=0, upper=None, reducer=<built-in function concat>, value='', take_all=False)
Repeatedly parses [lower, upper] occurrences.

If upper is None, there is no upper bound. The reducer is used to join the results together similar to
how it is used in then. The zeroth parse result (parser is not invoked yet) is a Success of value.
The first reduction is between zeroth and first results. If take_all, then all results are returned. If not
take_all, then only the greediest results are returned.

>>> p = Terminal('a').repeat()
>>> set(p(''))
{Result(value='', remain='')}
>>> set(p('b'))
{Result(value='', remain='b')}
>>> set(p('a'))
{Result(value='a', remain='')}
>>> set(p('aa'))
{Result(value='aa', remain='')}

skip(binder)
Similar to then, but the reducer takes the first value.

then(binder, reducer=<function Parser.<lambda>>)
Chains self and parser(s) returned by binder via reducer.

This is the bind function in monadic sense. binder is a callable that takes in a Result.value and
returns a Parser object. This parser is then applied on Result.remain.

binder can also be a Parser object. In this case, binder is used directly as the second parser.

If not, binder will be converted into a Terminal(str(binder)).

reducer takes two arguments, the first is Result.value of this parser, and the second is the
Result.value of the second parser. The result of reducer makes up the final result of the com-
posed parser.

The default reducer only takes the second Result.value.

1.1. compynator.core 7

https://doi.org/10.1007/978-3-540-77442-6_12
https://doi.org/10.1007/978-3-540-77442-6_12

compynator

In code, this looks like:

ret = Fail(tokens)
for value, remain self(tokens):

next_parser = binder(value)
for next_value, next_remain in next_parser(remain):

final_value = reducer(value, next_value)
ret = ret.add(Result(final_value, next_remain))

value(converter_or_value)
Converts Result.value into a different value.

converter_or_value can be a callable, or an object. If it is a callable, it takes Result.value and
returns a converted value. If it is a value, that value is used.

For example:

>>> digit = One.where(lambda c: '0' <= c <= '9')
>>> set(digit('8bc'))
{Result(value='8', remain='bc')}
>>> digit_as_int = digit.value(int)
>>> set(digit_as_int('8bc'))
{Result(value=8, remain='bc')}

where(predicate)
Selects results whose values pass predicate.

predicate is a callable that takes Result.value and returns True if that Result should be in-
cluded. This is a convenient wrapper around filter.

For example:

>>> digit = One.where(lambda c: '0' <= c <= '9')
>>> set(digit('abc'))
set()
>>> set(digit('8bc'))
{Result(value='8', remain='bc')}

class compynator.core.Result
Holds the parsed results.

Each result is a 2-tuple of value and remaining unparsed sequence of tokens.

NOTE: The input tokens are assumed to be immutable and len(remain) is sufficient to tell if two ``Re-
sult.remain``s are equal.

class compynator.core.ResultSet
A sized iterable collection of Result.

To incrementally construct a result set, first start with a Failure, then add more Result via add or
add_all.

add(result)
Returns a ResultSet (could be self) with result.

add_all(results)
Returns a ResultSet (could be self) with all results.

class compynator.core.Succeed(value)
Always returns a parsed result of value regardless of input.

For example:

8 Chapter 1. Reference

compynator

>>> s = Succeed(10)
>>> set(s('abc'))
{Result(value=10, remain='abc')}
>>> set(s('def'))
{Result(value=10, remain='def')}

parse_with_context(tokens, context)
Parses input tokens under the context of context.

class compynator.core.Success(*args, result=None, results=None)
A collection of Result in a successful parse.

A Success must have at least one Result. The constructor can take either keyword argument result or
results, but not both at the same time.

add(result)
Returns a ResultSet (could be self) with result.

add_all(results)
Returns a ResultSet (could be self) with all results.

class compynator.core.Terminal(terminal)
Matches terminal to the beginning of input tokens.

>>> t = Terminal('t')
>>> set(t(''))
set()
>>> set(t('t'))
{Result(value='t', remain='')}

parse_with_context(tokens, context)
Parses input tokens under the context of context.

compynator.core.default_parse_context(tokens)
Returns ParseContext for tokens.

1.2 compynator.niceties

compynator.niceties.Alnum = Parser<_Or@140281776574672>
Exactly one ASCII letter or digit.

compynator.niceties.Alpha = Parser<_Or@140281776574608>
Exactly one letter a-zA-Z

class compynator.niceties.Collect(*parsers)
A combinator that runs through all parsers in sequence and collects their results in a collection of many
flattened collections.

This is best described with examples:

>>> a, b, c = [Terminal(x) for x in 'abc']
>>> p = Collect(a, b, c)
>>> set(p('adc'))
set()
>>> p('adc')
Failure('Failed to collect.', 'adc', [Failure("Parser index 1: Expecting terminal
→˓'b'.", 'dc', ())])

(continues on next page)

1.2. compynator.niceties 9

compynator

(continued from previous page)

>>> set(p('abc'))
{Result(value=('a', 'b', 'c'), remain='')}
>>> a = a.repeat(0, 2, take_all=True)
>>> p = Collect(a, a, a)
>>> rs = p('a')
>>> len(rs)
4
>>> Result(value=('', '', ''), remain='a') in rs
True
>>> Result(value=('', '', 'a'), remain='') in rs
True
>>> Result(value=('', 'a', ''), remain='') in rs
True
>>> Result(value=('a', '', ''), remain='') in rs
True
>>> len(p('aa')) # -/-/-, -/-/a, -/a/-, a/-/-, ... # -/-/
→˓aa, -/a/a, -/aa/-, a/-/a, a/a/-, aa/-/-
10

Note that the final ResultSet could grow exponentially.

parse_with_context(tokens, context)
Parses input tokens under the context of context.

compynator.niceties.Digit = Parser<_Filter@140281776561360>
Exactly one decimal digit.

class compynator.niceties.Forward
A forward declaration of a rule.

This is useful in case the rule is defined recursively. For example, the BNF rule exp ::= (exp '-' exp)
| 'o' could be defined as followed:

>>> exp = Forward()
>>> exp.is_(((exp + '-' + exp) ^ 'o').memoize())
>>> set(exp('o'))
{Result(value='o', remain='')}
>>> sorted(exp('o-o'))
[Result(value='o', remain='-o'), Result(value='o-o', remain='')]

A forward declaration of Parser is the same as referring to that parser in a lambda:

>>> exp = (Succeed(None).then(lambda _: exp + '-' + exp) ^ 'o').memoize()
>>> set(exp('o'))
{Result(value='o', remain='')}
>>> sorted(exp('o-o'))
[Result(value='o', remain='-o'), Result(value='o-o', remain='')]

A RuntimeError will be raised if a Forward has not called is_, or if that method is called more than once.

>>> exp = Forward()
>>> exp('abc')
Traceback (most recent call last):
File "<stdin>", line 1, in ?

RuntimeError: A forward declaration has no definition.
>>> exp.is_('abc')
>>> exp.is_('abc')
Traceback (most recent call last):

(continues on next page)

10 Chapter 1. Reference

compynator

(continued from previous page)

File "<stdin>", line 1, in ?
RuntimeError: Already defined.

is_(parser)
Defines a forward declaration.

If parser is not typed Parser, its string representation will be made into a Terminal.

This method must be called exactly once for each Forward object. A RuntimeError will be raised if
it is called more than once.

parse_with_context(tokens, context)
Parses input tokens under the context of context.

compynator.niceties.HexDigit = Parser<_Or@140281776561616>
Exactly one hexadecimal digit.

class compynator.niceties.ITerminal(terminal)
Case insensitive terminal.

parse_with_context(tokens, context)
Parses input tokens under the context of context.

class compynator.niceties.Lookahead(parser, take_if=True, value='')
Tries parser but does not consume input.

If the truth value of the parse result is take_if, a Success of value is returned. Otherwise, a Failure is
returned.

parse_with_context(tokens, context)
Parses input tokens under the context of context.

compynator.niceties.Lower = Parser<_Filter@140281776562000>
Exactly one letter a-z.

compynator.niceties.OctDigit = Parser<_Filter@140281776561808>
Exactly one octadecimal digit.

class compynator.niceties.Regex(regex)
Regex matcher.

parse_with_context(tokens, context)
Parses input tokens under the context of context.

compynator.niceties.Upper = Parser<_Filter@140281776574544>
Exactly one letter A-Z

1.2. compynator.niceties 11

compynator

12 Chapter 1. Reference

PYTHON MODULE INDEX

c
compynator.core, 5
compynator.niceties, 9

13

compynator

14 Python Module Index

INDEX

A
add() (compynator.core.Failure method), 5
add() (compynator.core.ResultSet method), 8
add() (compynator.core.Success method), 9
add_all() (compynator.core.Failure method), 5
add_all() (compynator.core.ResultSet method), 8
add_all() (compynator.core.Success method), 9
Alnum (in module compynator.niceties), 9
Alpha (in module compynator.niceties), 9

C
call() (compynator.core.Parser method), 6
Collect (class in compynator.niceties), 9
compynator.core (module), 5
compynator.niceties (module), 9

D
default_parse_context() (in module compyna-

tor.core), 9
Digit (in module compynator.niceties), 10

E
Empty (in module compynator.core), 5

F
Failure (class in compynator.core), 5
filter() (compynator.core.Parser method), 6
Forward (class in compynator.niceties), 10

H
HexDigit (in module compynator.niceties), 11

I
is_() (compynator.niceties.Forward method), 11
ITerminal (class in compynator.niceties), 11

L
Lookahead (class in compynator.niceties), 11
Lower (in module compynator.niceties), 11

M
max_recursion() (compynator.core.ParseOptions

property), 6
memoize() (compynator.core.Parser method), 7

O
OctDigit (in module compynator.niceties), 11

P
parse() (compynator.core.Parser method), 7
parse_with_context() (compynator.core.Parser

method), 7
parse_with_context() (compynator.core.Succeed

method), 9
parse_with_context() (compyna-

tor.core.Terminal method), 9
parse_with_context() (compyna-

tor.niceties.Collect method), 10
parse_with_context() (compyna-

tor.niceties.Forward method), 11
parse_with_context() (compyna-

tor.niceties.ITerminal method), 11
parse_with_context() (compyna-

tor.niceties.Lookahead method), 11
parse_with_context() (compyna-

tor.niceties.Regex method), 11
ParseContext (class in compynator.core), 5
ParseOptions (class in compynator.core), 6
Parser (class in compynator.core), 6

R
Regex (class in compynator.niceties), 11
repeat() (compynator.core.Parser method), 7
Result (class in compynator.core), 8
ResultSet (class in compynator.core), 8

S
skip() (compynator.core.Parser method), 7
Succeed (class in compynator.core), 8
Success (class in compynator.core), 9

15

compynator

T
Terminal (class in compynator.core), 9
then() (compynator.core.Parser method), 7

U
Upper (in module compynator.niceties), 11

V
value() (compynator.core.Parser method), 8

W
where() (compynator.core.Parser method), 8

16 Index

	Reference
	compynator.core
	compynator.niceties

	Python Module Index
	Index

